Union Calendar No. 187

111TH CONGRESS 1ST SESSION

H. R. 3276

[Report No. 111-328]

To promote the production of molybdenum-99 in the United States for medical isotope production, and to condition and phase out the export of highly enriched uranium for the production of medical isotopes.

IN THE HOUSE OF REPRESENTATIVES

July 21, 2009

Mr. Markey of Massachusetts (for himself and Mr. Upton) introduced the following bill; which was referred to the Committee on Energy and Commerce

NOVEMBER 4, 2009

Additional sponsors: Mr. Carnahan, Mr. McGovern, Mr. Blunt, Mr. Inslee, Ms. Sutton, and Ms. Zoe Lofgren of California

NOVEMBER 4, 2009

Reported with an amendment, committed to the Committee of the Whole House on the State of the Union, and ordered to be printed

[Strike out all after the enacting clause and insert the part printed in italic]

[For text of introduced bill, see copy of bill as introduced on July 21, 2009]

A BILL

To promote the production of molybdenum-99 in the United States for medical isotope production, and to condition and phase out the export of highly enriched uranium for the production of medical isotopes.

- 1 Be it enacted by the Senate and House of Representa-
- 2 tives of the United States of America in Congress assembled,
- 3 SECTION 1. SHORT TITLE.
- 4 This Act may be cited as the "American Medical Iso-
- 5 topes Production Act of 2009".
- 6 SEC. 2. FINDINGS.

17

18

19

20

21

22

23

24

- 7 Congress finds the following:
- (1) Molybdenum-99 is a critical medical isotope 8 9 whose decay product technecium-99m is used in ap-10 proximately two-thirds of all diagnostic medical iso-11 tope procedures in the United States, or 16 million 12 medical procedures annually, including for the detec-13 tion of cancer, heart disease, and thyroid disease, in-14 vestigating the operation of the brain and kidney, im-15 aging stress fractures, and tracking cancer stages.
 - (2) Molybdenum-99 has a half-life of 66 hours, and decays at a rate of approximately one percent per hour after production. As such, molybdenum-99 cannot be stockpiled. Instead, molybdenum-99 production must be scheduled to meet the projected demand and any interruption of the supply chain from production, to processing, packaging, distribution, and use can disrupt patient care.
 - (3) There are no facilities within the United States that are dedicated to the production of molyb-

- denum-99 for medical uses. The United States must import molybdenum-99 from foreign production facilities, and is dependent upon the continued operation of these foreign facilities for millions of critical medical procedures annually.
 - (4) Most reactors in the world which produce molybdenum-99 utilize highly enriched uranium, which can also be used in the construction of nuclear weapons. In January 2009, the National Academy of Sciences encouraged molybdenum-99 producers to convert from highly enriched uranium to low enriched uranium, and found that there are "no technical reasons that adequate quantities cannot be produced from LEU targets in the future" and that "a 7-10 year phase-out period would likely allow enough time for all current HEU-based producers to convert".
 - (5) The 51-year-old National Research Universal reactor in Canada, which is responsible for producing approximately sixty percent of United States demand for molybdenum-99 under normal conditions, was shut down unexpectedly May 14, 2009, after the discovery of a leak of radioactive water. It is unclear whether the National Research Universal reactor will be able to resume production of molybdenum-99.

- 1 (6) The United States currently faces an acute 2 shortage of molybdenum-99 and its decay product 3 technetium-99m due to technical problems which have 4 seriously interrupted operations of foreign nuclear re-5 actors producing molybdenum-99.
 - (7) As a result of the critical shortage of molybdenum-99, patient care in the United States is suffering. Medical procedures requiring technetium-99 are being rationed or delayed, and alternative treatments which are less effective, more costly, and may result in increased radiation doses to patients are being substituted in lieu of technetium-99.
 - (8) The radioactive isotope molybdenum-99 and its decay product technetium-99m are critical to the health care of Americans, and the continued availability of these isotopes, in a reliable and affordable manner, is in the interest of the United States.
 - (9) The United States should move expeditiously to ensure that an adequate and reliable supply of molybdenum-99 can be produced in the United States, without the use of highly enriched uranium.
 - (10) Other important medical isotopes, including iodine-131 and xenon-133, can be produced as by-products of the molybdenum-99 fission production process. In January 2009, the National Academy of

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Sciences concluded that these important medical isotopes "will be sufficiently available if Mo-99 is available". The coproduction of medically useful isotopes such as iodine-131 and xenon-133 is an important benefit of establishing molybdenum-99 production in the United States without the use of highly enriched uranium, and these coproduced isotopes should also be available for necessary medical uses.

- (11) The United States should accelerate its efforts to convert nuclear reactors worldwide away from the use of highly enriched uranium, which can be used in nuclear weapons, to low enriched uranium. Converting nuclear reactors away from the use of highly enriched uranium is a critically important element of United States efforts to prevent nuclear terrorism, and supports the goal announced in Prague by President Barack Obama on April 5, 2009, to create "a new international effort to secure all vulnerable nuclear material around the world within four years".
- (12) The United States is engaged in an effort to convert civilian nuclear test and research reactors from highly enriched uranium fuel to low enriched uranium fuel through the Global Threat Reduction Initiative. As of September 2009, this program has

1	successfully converted 17 reactors in the United States
2	to low enriched uranium fuel, some of which are ca-
3	pable of producing molybdenum-99 for medical uses.
4	SEC. 3. IMPROVING THE RELIABILITY OF DOMESTIC MED-
5	ICAL ISOTOPE SUPPLY.
6	(a) Medical Isotope Development Projects.—
7	(1) In General.—The Secretary of Energy shall
8	establish a program to evaluate and support projects
9	for the production in the United States, without the
10	use of highly enriched uranium, of significant quan-
11	tities of molybdenum-99 for medical uses.
12	(2) Criteria.—Projects shall be judged against
13	the following primary criteria:
14	(A) The length of time necessary for the pro-
15	posed project to begin production of molyb-
16	denum-99 for medical uses within the United
17	States.
18	(B) The capability of the proposed project
19	to produce a significant percentage of United
20	States demand for molybdenum-99 for medical
21	uses.
22	(C) The cost of the proposed project.
23	(3) Exemption.—An existing reactor fueled with
24	highly enriched uranium shall not be disqualified

1	from the program if the Secretary of Energy deter-					
2	mines that—					
3	(A) there is no alternative nuclear reactor					
4	fuel, enriched in the isotope U-235 to less than					
5	20 percent, that can be used in that reactor;					
6	(B) the reactor operator has provided assur-					
7	ances that, whenever an alternative nuclear reac-					
8	tor fuel, enriched in the isotope U-235 to less					
9	than 20 percent, can be used in that reactor, it					
10	will use that alternative in lieu of highly en-					
11	riched uranium; and					
12	(C) the reactor operator has provided a cur-					
13	rent report on the status of its efforts to convert					
14	the reactor to an alternative nuclear reactor fuel					
15	enriched in the isotope U-235 to less than 20					
16	percent, and an anticipated schedule for comple-					
17	tion of conversion.					
18	(4) Authorization of Appropriations.—					
19	There are authorized to be appropriated to the Sec-					
20	retary of Energy for carrying out the program under					
21	paragraph (1) \$163,000,000 for the period encom-					
22	passing fiscal years 2010 through 2014.					
23	(b) Development Assistance.—The Secretary of					
24	Energy shall establish a program to provide assistance					
25	for—					

- (1) the development of fuels, targets, and proc esses for domestic molybdenum-99 production that do
 not use highly enriched uranium; and
- 4 (2) commercial operations using the fuels, tar-5 gets, and processes described in paragraph (1).
- 6 (c) Uranium Lease and Take Back.—The Secretary of Energy shall establish a program to make low enriched 8 uranium available, through lease contracts, for irradiation for the production of molybdenum-99 for medical uses. The 10 lease contracts shall provide for the Secretary to retain responsibility for the final disposition of radioactive waste 12 created by the irradiation, processing, or purification of leased uranium. The lease contracts shall also provide for compensation in cash amounts equivalent to prevailing 14 15 market rates for the sale of comparable uranium products and for compensation in cash amounts equivalent to the 16 net present value of the cost to the Federal Government for 18 the final disposition of such radioactive waste, provided that the discount rate used to determine the net present 19 value of such costs shall be no greater than the average in-20 21 terest rate on marketable Treasury securities. With respect to the final disposition of such radioactive waste from such 23 leased uranium, the Secretary shall not use the authorities

under section 3112 of the USEC Privatization Act (42

- 1 U.S.C. 2297h-10) or section 53, 63, or 161 m. of the Atomic
- 2 Energy Act of 1954 (42 U.S.C. 2073, 2093, or 2201(m)).
- 3 SEC. 4. EXPORTS.
- 4 Section 134 of the Atomic Energy Act of 1954 (42
- 5 U.S.C. 2160d(b)) is amended by striking subsections b. and
- 6 c. and inserting in lieu thereof the following:
- 7 "b. Effective 7 years after the date of enactment of the
- 8 American Medical Isotopes Production Act of 2009, the
- 9 Commission may not issue a license for the export of highly
- 10 enriched uranium from the United States for the purposes
- 11 of medical isotope production.
- 12 "c. The period referred to in subsection b. may be ex-
- 13 tended for no more than four years if, no earlier than 6
- 14 years after the date of enactment of the American Medical
- 15 Isotopes Production Act of 2009, the Secretary of Energy
- 16 certifies to the Committee on Energy and Commerce of the
- 17 House of Representatives and the Committee on Energy and
- 18 Natural Resources of the Senate that—
- 19 "(1) there is insufficient global supply of molyb-
- 20 denum-99 produced without the use of highly enriched
- 21 uranium available to satisfy the domestic United
- 22 States market; and
- "(2) the export of United States-origin highly en-
- 24 riched uranium for the purposes of medical isotope
- 25 production is the most effective temporary means to

1	increase the supply of molybdenum-99 to the domestic			
2	United States market.			
3	"d. At any time after the restriction of export license			
4	provided for in subsection b. becomes effective, if there is			
5	a critical shortage in the supply of molybdenum-99 avail-			
6	able to satisfy the domestic United States medical isotop			
7	needs, the restriction of export licenses may be suspende			
8	for a period of no more than 12 months, if—			
9	"(1) the Secretary of Energy certifies to the Con-			
10	gress that the export of United States-origin highly			
11	1 enriched uranium for the purposes of medical isotop			
12	production is the only effective temporary means to			
13	increase the supply of molybdenum-99 necessary to			
14	meet United States medical isotope needs during that			
15	period; and			
16	"(2) the Congress passes a Joint Resolution ap-			
17	proving the temporary suspension of the restriction of			
18	export licenses.			
19	"e. As used in this section—			
20	"(1) the term 'alternative nuclear reactor fuel or			
21	target' means a nuclear reactor fuel or target which			
22	is enriched to less than 20 percent in the isotope U-			
23	235;			

1	"(2) the term 'highly enriched uranium' means					
2	uranium enriched to 20 percent or more in the iso-					
3	$tope\ U$ -235;					
4	"(3) a fuel or target 'can be used' in a nuclear					
5	research or test reactor if—					
6	"(A) the fuel or target has been qualified by					
7	the Reduced Enrichment Research and Test Re-					
8	actor Program of the Department of Energy; and					
9	"(B) use of the fuel or target will permit the					
10	large majority of ongoing and planned experi-					
11	ments and isotope production to be conducted in					
12	the reactor without a large percentage increase					
13	in the total cost of operating the reactor; and					
14	"(4) the term 'medical isotope' includes molyb-					
15	denum-99, iodine-131, xenon-133, and other radio-					
16	active materials used to produce a radiopharma-					
17	ceutical for diagnostic, therapeutic procedures or for					
18	research and development.".					
19	SEC. 5. REPORT ON DISPOSITION OF EXPORTS.					
20	Not later than 1 year after the date of the enactment					
21	of this Act, the Chairman of the Nuclear Regulatory Com-					
22	mission, after consulting with other relevant agencies, shall					
23	submit to the Congress a report detailing the current dis-					
24	position of previous United States exports of highly en-					
25	riched uranium, including—					

1	(1) their location;
2	(2) whether they are irradiated;
3	(3) whether they have been used for the purpose
4	stated in their export license;
5	(4) whether they have been used for an alter-
6	native purpose and, if so, whether such alternative
7	purpose has been explicitly approved by the Commis-
8	sion;
9	(5) the year of export, and reimportation, if ap-
10	plicable;
11	(6) their current physical and chemical forms;
12	and
13	(7) whether they are being stored in a manner
14	which adequately protects against theft and unauthor-
15	ized access.
16	SEC. 6. DOMESTIC MEDICAL ISOTOPE PRODUCTION.
17	(a) In General.—Chapter 10 of the Atomic Energy
18	Act of 1954 (42 U.S.C. 2131 et seq.) is amended by adding
19	at the end the following new section:
20	"Sec. 112. Domestic Medical Isotope Produc-
21	TION. a. The Commission may issue a license, or grant an
22	amendment to an existing license, for the use in the United
23	States of highly enriched uranium as a target for medical
24	isotope production in a nuclear reactor, only if, in addition
25	to any other requirement of this Act—

1	"(1) the Commission determines that—
2	"(A) there is no alternative medical isotope
3	production target, enriched in the isotope U-235
4	to less than 20 percent, that can be used in that
5	reactor; and
6	"(B) the proposed recipient of the medical
7	isotope production target has provided assur-
8	ances that, whenever an alternative medical iso-
9	tope production target can be used in that reac-
10	tor, it will use that alternative in lieu of highly
11	enriched uranium; and
12	"(2) the Secretary of Energy has certified that
13	the United States Government is actively supporting
14	the development of an alternative medical isotope pro-
15	duction target that can be used in that reactor.
16	"b. As used in this section—
17	"(1) the term 'alternative medical isotope pro-
18	duction target' means a nuclear reactor target which
19	is enriched to less than 20 percent of the isotope U-
20	235;
21	"(2) a target 'can be used' in a nuclear research
22	or test reactor if—
23	"(A) the target has been qualified by the Re-
24	duced Enrichment Research and Test Reactor
25	Program of the Department of Energy; and

- 1 "(B) use of the target will permit the large 2 majority of ongoing and planned experiments and isotope production to be conducted in the re-3 4 actor without a large percentage increase in the 5 total cost of operating the reactor; 6 "(3) the term 'highly enriched uranium' means 7 uranium enriched to 20 percent or more in the iso-8 tope U-235; and "(4) the term 'medical isotope' includes molyb-9 denum-99, iodine-131, xenon-133, and other radio-10 11 active materials used to produce a radiopharma-12 ceutical for diagnostic, therapeutic procedures or for
- 14 (b) Table of Contents.—The table of contents for 15 the Atomic Energy Act of 1954 is amended in the items 16 relating to chapter 10, by inserting at the end the following 17 new item:

"Sec. 112. Domestic medical isotope production.".

research and development.".

18 SEC. 7. ANNUAL DEPARTMENT OF ENERGY REPORTS.

The Secretary of Energy shall report to Congress no 20 later than one year after the date of enactment of this Act, 21 and annually thereafter for 5 years, on Department of En-22 ergy actions to support the production in the United States, 23 without the use of highly enriched uranium, of molyb-24 denum-99 for medical uses. These reports shall include the 25 following:

1	(1) For medical isotope development projects—			
2	(A) the names of any recipients of Depart-			
3	ment of Energy support under section 3 of this			
4	Act;			
5	(B) the amount of Department of Energy			
6	funding committed to each project;			
7	(C) the milestones expected to be reached for			
8	each project during the year for which suppor			
9	$is\ provided;$			
10	(D) how each project is expected to support			
11	the increased production of molybdenum-99 for			
12	$medical\ uses;$			
13	(E) the findings of the evaluation of projects			
14	under section $3(a)(2)$ of this Act; and			
15	(F) the ultimate use of any Department of			
16	Energy funds used to support projects under sec-			
17	tion 3 of this Act.			
18	(2) A description of actions taken in the previous			
19	year by the Secretary of Energy to ensure the safe			
20	disposition of radioactive waste from used molyb-			
21	denum-99 targets.			
22	SEC. 8. NATIONAL ACADEMY OF SCIENCES REPORT.			
23	The Secretary of Energy shall enter into an arrange-			
24	ment with the National Academy of Sciences to conduct a			
25	study of the state of molybdenum-99 production and utiliza-			

1	tion, to be provided to the Congress not later than 5 years
2	after the date of enactment of this Act. This report shall
3	include the following:
4	(1) For molybdenum-99 production—
5	(A) a list of all facilities in the world pro-
6	ducing molybdenum-99 for medical uses, includ-
7	ing an indication of whether these facilities use
8	highly enriched uranium in any way;
9	(B) a review of international production of
10	molybdenum-99 over the previous 5 years, in-
11	cluding—
12	(i) whether any new production was
13	$brought\ online;$
14	(ii) whether any facilities halted pro-
15	duction unexpectedly; and
16	(iii) whether any facilities used for
17	production were decommissioned or other-
18	wise permanently removed from service; and
19	(C) an assessment of progress made in the
20	previous 5 years toward establishing domestic
21	production of molybdenum-99 for medical uses,
22	including the extent to which other medical iso-
23	topes coproduced with molybdenum-99, such as
24	iodine-131 and xenon-133, are being used for
25	medical purposes.

1	(2) An assessment of the progress made by the					
2	Department of Energy and others to eliminate all					
3	worldwide use of highly enriched uranium in reactor					
4	fuel, reactor targets, and medical isotope production					
5	facilities.					
6	SEC. 9. DEFINITIONS.					
7	In this Act the following definitions apply:					
8	(1) Highly enriched uranium.—The term					
9	"highly enriched uranium" means uranium enriched					
10	to 20 percent or greater in the isotope U-235.					
11	(2) Low enriched uranium.—The term 'low					
12	enriched uranium" means uranium enriched to less					
13	than 20 percent in the isotope U-235.					

Union Calendar No. 187

111 TH CONGRESS H. R. 3276

[Report No. 111-328]

A BILL

To promote the production of molybdenum-99 in the United States for medical isotope production, and to condition and phase out the export of highly enriched uranium for the production of medical isotopes.

NOVEMBER 4, 2009

Reported with an amendment, committed to the Committee of the Whole House on the State of the Union, and ordered to be printed